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1    Introduction 

The solution of the inverse scattering problem requires, in essence, an inversion 
of a nonlinear mapping. There are two major difficulties associated with this 
nonlinear problem in two and three dimensions : ill-posedness and local minima, 
neither of which has been addressed satisfactorily. The fact alone that the nonlin- 
ear system at high wave number is extremely oscillatory and therefore possesses 
numerous local minima renders the most popular approach—nonlinear optimiza- 
tion and its various modifications—fundamentally unreliable. In another notable 
approach to attacking the nonlinear problem, the original boundary value prob- 
lem is reformulated as an initial value problem. The resulting method (known 
under several names such as layer-stripping, trace method) avoids the problem 
of local minima, only to be plagued by ill-posedness. There are still other ap- 
proaches which compromise in some way but have not yet been able to squeeze 
through the flails of these two perils. 

We present a stable method that solves the inverse scattering problem. It 
turns out that the ill-posedness of the inverse problem can be beneficially used 
to solve it. It means that not all equations in the nonlinear system are strongly 
nonlinear, and that when solved recursively in a proper order, they can be reduced 
to a collection of linear problems. 

Our method requires solutions of a series of forward scattering problems with 
ascending wave numbers (or frequencies). At each frequency, a linear least- 
squares problem is solved to obtain an approximate index of refraction which 
not only minimizes, but also eliminates the discrepancy between the prescribed 
and the predicted scattering data. The robustness of the procedure is illustrated 
by several numerical examples in the inversion of the Helmholtz equation in two 
dimensions. 

The plan of the paper is as follows: in Section 2 we summerize the relevant 
analytical apparatus, in Section 3 we reformulate the ill-posedness and the in- 
verse scattering problem, and present the inversion method, and in Section 4 we 
describe the numerical implementation of the algorithm. The robustness of the 
procedure is demonstrated with numerical examples in Section 5. 

2    The Mathematical Preliminaries 

In this section we summarize several analytical results regarding the scattering 
problem, the solution of a nonlinear problem, and the solution of linear ordinary 
differential equations of matrices. 
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2.1    The Scattering Problem 

The subject of this paper is the inverse scattering problem for Helmholtz equation 
in two dimensions 

A<f>(x, y) + k2{\ + q(x, y))4>{x, y) = 0. (1) 

In (1), k is a real number, q a smooth function, with q(x) > —1 for all x € R2- 
We will be referring to k as the wave number or frequency, to the function q as 
the scatterer or the forward model. We assume that the support of q is a disk 
D(tu) defined by the formula 

D{w) = { (x,y)\x2 + y2<zu2} (2) 

for some w > 0. We will be considering solutions of equation (1) of the form 

<t>{x,y) = Mx>y) + i>{x,y), (3) 
with <j)Q : Divj) -»Ca solution of the equation 

A<p0(x,y) + k2(ß0(x,y) = 0 (4) 

(to which we will be referring as the homogeneous Helmholtz equation), and 
ip : R2 —•> C the solution of the equation 

A?P(x:y) + k2(l + q(x,y))iP(x,y)=-k2q(x,y)Mx,y), (5) 

subject to the outgoing (Sommerfeld) radiation condition 

AS, ^ (^ " lk^j = °- (6) 
We will be referring to <f> as the total field, to <j>0 as the incident field, and to ip as 
the scattered field. Furthermore, given an incident field <^0 we will be referring to 
the determination of the corresponding scattered field as the (forward) scattering 
problem. 

Remark 2.1 We measure the size of the scatterer by the number of wavelengths 
through the longest ray tube. More precisely, suppose that the curve £ C Dim) is 
the longest ray tube, and ds is the arc length element on t; then the number of 
wavelengths across I is given by the formula is 

N   =± 
W 27T 

Jtyjl + q{x,y)ds. (7) 

When the medium is quite homogeneous, namely, when q is small, and thus the 
ray path is roughly straight, (7) is reduced to 

k-w 
Nw = . (8) 

TV v   ' 



2.2    The Scattering Matrix and Scattering Data 

In this subsection, we reformulate the scattering problem introduced in the pre- 
ceding subsection via the scattering matrix. For a more complete description and 
analysis of the scattering matrix, see [11]. Denote by Jm the Bessel function of 
the first kind of order m, by Ym the Neumann function (or the Bessel function 
of the second kind) of order m, and by Hm Hankel function of the first kind of 
order m, so that 

■"m  = "TO "T 2°-Mn- (yj 

Given a positive number z, we will denote by Xz the linear space of all two-sided 
complex sequences {am} such that for some c > 0 

Wm-Jm{z)\ < C, (10) 

for all integer m. We will denote by Yz the linear space of all two-sided complex 
sequences {ßm} such that for some c > 0 

\ßm-Hm(z)\ < c, (11) 

for all integer m. 

Remark 2.2 It is well-known (see, for example, [4], [5], [3]) that once the pos- 
itive number v is greater than z, the Bessel function Ju{z) strictly decays as v 
grows, and that the Neumann function Yu(z) strictly grows as v grows. Moreover, 
Ju{z) becomes very small, and Yv{z) becomes very large, when v reaches 

N0(z) = z + 0 (23) . (12) 

Finally, for v > N0(z), 

V 7rm   \e-z J 

Remark 2.3 Formulae (10) and (11) can be rewritten as 

(\ \m\ 

,Q , /2|m|Vm|   rr-, ,   , 



It is well-known (see, for example, [1], [11] for details) that inside disk D(w), the 
solution <f>o of the homogeneous Helmholtz equation (4) can be expressed as 

Mr,Q)=    E   *m-Jm(kr)-eme, (17) 
771= —CO 

with the sequence a = {am} G Xka, and that outside D(zu), the scattered field 
ip can be expressed as 

CO 

lKr,0)=   £   ßm-Hm(kr)-e'm9. (18) 
m=—oo 

with the sequence ß = {ßm} G 3^. The well-posedness of the scattering problem 

implies a linear mapping 5OT,fc : Xkw i-> Fw defined by the formula 

ß = SmXa, (19) 

for every a = {am} G Xk^ of the incident field (17) and ß = {/3m} G V*^ of the 
corresponding scattered field (18). The linear mapping Sw,k is refered to as the 
scattering matrix corresponding to the scatterer q in D(w). For a fixed k > 0, the 
scattering matrix is evidently all we can acquire from scattering measurements 
outside the disk D(zu). The set of matrices 

{ Sa,k  |  0 < k < oo } (20) 

is all the information we can collect from real-frequency measurements, and is 
defined as our scattering data. 

Definition 2.4 An aperture (of acoustic measurement) is an area in the square 
[0,27r] x [0,27r]; the full aperture is the entire square. A Fourier aperture is an 
area in the (two-dimensional) Fourier space, and for such an area E, a function 
g G L2(Q) is said to be specified on a Fourier aperture E if its Fourier transform 
gmtn is known for all points (m, ra) G E. 

Remark 2.5 The knowledge of the scattering matrix SWik is equivalent to that 
of the full-aperture measurements taken outside D(w), that is, the acquisition of 
each scattered field ip outside D{xzi) corresponding to every possible incident field 
4>0; see (56), (57) for further details. 

Remark 2.6 Obviously, for a given positive number r, the above analysis and 
definition can be applied to a scatterer located on the disk D(r). In particular, 
there is a scattering matrix, denoted by STtk, corresponding to this disk scatterer. 

Remark 2.7 For two positive numbers r-i < r^, a scatterer in the disk D{r\) can 
always be regarded as a scatterer in the larger disk D{r2). Therefore, there are 
two scattering matrices, STl,k and Sr2tk, corresponding to the same scatterer on 
the two concentric disks. It is easy to verify that the two matrices are identical. 



2.3    The Riccati Matrix Equation 

We show in this subsection that the scattering matrix S^k is a member of a family 
of scattering matrices governed by a Riccati equation. For a more complete 
discussion of the Riccati matrix equation, see [11]. For r > 0, following the 
standard procedure of invariant embedding, we define the chopped scatterer qD^ 
by the formula 

9D(r)(p,0)-j 0 \i p>r. {1) 

We will denote by Sr,k '■ Xkr ►-»■ Ykr the scattering matrix (see Remark 2.6) 
corresponding to the chopped scatterer. In other words, for every a. e Xkr there 
exists ß € Y^ such that 

ß = Sr,k-a (22) 

where 
oo 

^{p,9)=   £   ßm-Hm{kp)-eime (23) 
m=—oo 

is the scattered field outside D{r) corresponding to the incident field 

oo 

<h(P,0)=   E   am-Jm{kp)-eime (24) 
m=—oo 

upon the scatterer qD(r)- For any r > w, 

Sr,k = SWjk, (25) 

due to Remark 2.7. At r = 0, the chopped scatterer qD(r) is identically zero; any 
incident field generates no scattered field. Thus, 

S0,k = 0. (26) 

Now we need the following notation in order to present a ordinary differential 
equation for Sr,k- Denote by Jz, Hz the diagonal matrices 

Jz   =   diag{...,J-1{z),J0(z),J1(z),...}, (27) 

Hz   =   diag{...,H-1{z),H0(z),H1{z),...}, (28) 

and by F the Fourier transform converting a function in L2[0,2ir] to its Fourier 
coefficients in £2. Let 

9m(r) = ^jo    9(r,6)emede, (29) 

for a smooth function g : R2 >-»• C, and let gr be the matrix whose (rn, n)-th entry 
is defined by the formula 

(gr)m,n=gm-n(r). (30) 



Remark 2.8 Denoting by gr : L2[0,27r] \-+ L2[0,2ir] the diagonal linear mapping 

(9r-f){0) = g(r,eyf(0) (3i) 

for all f G L2
[0,2TT], we can easily verify that 

gr = F-gT-F-\ (32) 

Obviously, for the scatterer function q, qT is a Toeplitz matrix whose first quadrant 
(entries with both row and column indices positive) is of the form 

q0{r) 9_i(r) g_2(r) q_3(r) g_4(r) q_5(r) ■■■ 

?i(r) 9o(r) g-i(r) ?_2(r) q_3(r) q_4(r) ■■■ 

h(r) qi(r) q0(r) ?_j(r) g_2(r) ^_3(r) ••• 

qr   =     q3(r) q2{r) gx(r) <?0(r) g_i(r) ?_2(r) •••     .                      (33) 

qi{r) qs(r) q2(r) &(r) q0(r) g_x(r) ••■ 

?s(j") ?4(r) $3(r) ?2(r) gi(r) g0(r) ■•• 

As a function of r, the scattering matrix STtk satisfies a Riccati equation, see [11] 
for details. 

Lemma 2.9 For any k > 0 and all r > 0, the scattering matrix Sr^ : Xkr *-^ Y^r 

is a solution of the Riccati equation 

dS. r.k VKr. 
~j        —  ~n~k   (Jkr + Srjk-Hkr)-qr-(Hkr-Sr,k + Jkr (34) 

In the reminder of this paper, we assume that the initial value problem defined 
by (34) and (26) is well-posed, and that the entries of the matrix STtk depend on 
(r, k) smoothly. 

Remark 2.10 Given k and q, the initial value problem of the Riccati equation 
(see (34) and (26)) will be solved in the forward modeling of the inversion algo- 
rithm described in Section 3.6; see (146), (147) for details. 

Remark 2.11 According to formulae (10) and (11), the sequence a = {am} in 
(22) may grow as fast as J~1(kr), whereas the sequence ß = {ßm} in (22) must 
decay at least as fast as H~1(kr).  Therefore, Remark 2.2 and the fact 
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implies that 

(Sr,*)m,n     =     0{H^{kr)), 

(Sr,k)n,m     =     0(Jm(kr)), 

(36) 

(37) 

for an arbitrary integer n and large integer m > N0(kr). Thus, the entries 
of Sr,k whose row or column indices are greater in absolute value than No(kr) 
are essentially zero (see Figure 1); the dimension of scattering matrix ST^ is 
effectually finite: it is essentially a square matrix of dimension 2-No(kr). 

The structure of the first quadrant (entries with both row and column indices 
positive) of the matrix Sr,k is shown in Figure 1. In the figure, a part of a matrix 
is labeled zero to indicate that the entries in that part of the matrix are essentially 
zero. 

N0{kr) 

Figure 1: Scatterer on D(r) and Structure of Its Scattering Matrix Sr,k- 

Remark 2.12 Given an operator T which maps from one linear space X to 
another Y, we will casually use the term virtually-null space of J-': an element 
(el belongs to the virtually-null space if .F(£) is small. We will also loosely 
use the phrase virtual rank of an operator in accordance with the term virtually-null 
space; the virtual rank of the scattering matrix Sr>k, for instance, is no greater 
than 2-No(r,k) (see Remark 2.11). We may further think of virtual rank as a 
real number. 

Remark 2.13 Given positive numbers k and r, according to Remark 2.2, the 
diagonal matrix Jkr is essentially a square matrix of dimension 2-No(kr). There- 

fore, up to 0[(kr)z], the matrix J\.T can be regarded as to have the same structure 
as that of Sr>k (see Figure 1). 

Remark 2.14 Given positive numbers k and r, combining (35) with formulae 

(10), (11), we obtain 

(Sr,k-Hkr)n,m     =     0 (H^
1
 (kr)) , 

(Hkr-ST,k)m,n   =   0(Jm(kr)), 

(38) 

(39) 



for an arbitrary integer m and large integers n > No(kr). In other words, the 
matrix Sr^-Hkr only has 2-No(kr) effectually nonzero rows—the rest of the rows 
whose indices are greater in absolute value than No(kr) are essentially zero. Sim- 
ilarly, the number of effectually nonzero columns of Hkr-ST,k is also 2-No(kr). 

N0(kr 

S-H H-S 

Figure 2: Structures of the Matrices  ST,k-Hkr,  Hkr'S- r,k 

Figure 2 shows the structures of the two matrices Sr,k-Hkr and Hkr-ST^- Only the 
first quadrant of the matrices (entries with both row and column indices positive) 
is depicted here. In the figure, a section of a matrix is labeled zero to indicate 
that the entries in that part of the matrix are essentially zero. 

Remark 2.15 Given a frequency k > 0, the forward scattering problem (see 
Section 2.1 and Remark 2.10) defines a nonlinear mapping from the scatterer q 
on D(w) to the scattering data Sw^- The initial value problem defined by (34) 
and (26) turns out to be a convenient tool for analyzing and numerically treating 
this nonlinear system. According to Remark 2.11, SWtk only has (2-N0(kw))2 

entries essentially nonzero; therefore, there will be the same number of equations 
in the nonlinear system. 

Finally in this subsection, we show some basic algebraic properties of the 
matrix Riccati equation and the scattering matrix. 

Definition 2.16 Suppose that N is a positive integer or -foo. For a square 
matrix A ai,ji -N < i,j < N ) of dimension 2N — 1, define 

B   =   Ar = (k,3, -N<i,j<N), (40) 

(41) 

Clearly, the operator (• • -)T defines a linear mapping from (7(2^-1)x(2iv-i) to jtsejf_ 

The following lemma is a direct consequence of Definition 2.16. 



Lemma 2.17 Suppose that N is a positive integer or +00. Suppose further that 
A,B are two matrices and I is the identity matrix in C'(2JV-i)x(2iv-i)_ Finauy> 

suppose that T € C^-i)*^"1) is the diagonal matrix ?iti = (-1)*'.  Then 

{A-B)T   =   BT-AT, (42) 

(Ay   =   A, (43) 

r = /, (44) 
TT   =   T. (45) 

The following lemma is a direct consequence of Lemmas 2.17 and 2.9. 

Lemma 2.18 Suppose that r, k are positive numbers, and that Sr,k is the scat- 
tering matrix corresponding to the chopped scatterer qo(r)- Suppose further that 
T is diagonal matrix of infinite dimension defined by Tj,,- = (—1)'.  Then 

(jkry = r-jkr = jkr-r, (46) 
(Hkry = r-HkT = Hkr-r, (47) 

(qry    =    T-&-T, (48) 
(Sr,ky   =   Sr,k. (49) 

2.4    The Far Field 

In this subsection, we first define the far field of a scattered field, and link it to the 
scattering matrix. We then introduce the translation operator of the scattering 
matrix. We will require the column-vector Fe and the row-vector Ff1 defined by 

Fe   =   {e-im\m = .. .,-2,-1,0,1,2,... }T, (50) 

Ff1   =   {eim6,m = ... ,-2,-1,0,1,2,...}, (51) 

and the diagonal matrix A defined by 

A = diag{... ,i~2,i_1
: l,i,i

2,. ..}• (52) 

Lemma 2.19 Given k > 0, there exists a function ^ : [0,2x] t-> C, such that 
for large r > 0, the scattered field (18) assumes the form 

^•"» = \/^(""*/4,-(^W+0(F))- (53) 

Proof. For arbitrary integer m and large z > \m\ (see [3], pp 364), 

ff-w = \/5ei<*""4'-(r"' + 0(i))- (54) 

The lemma follows immediately from the combination of (54) and (18). □ 



Definition 2.20 Suppose that xp is a scattered field; then the function 

MO) = lim    J^M)  (55) 
r—oo     /   2 _ei(kr-ir/4) 

Tikr 

is referred to as the far field of ip. 

Given the incident angle ß € [0, 2ir] and the incident field 

<ßo{x, y) = jHsvß+vmß) = e«-*rcos(9-/?)} ^56^ 

we denote by ip(r, 6; ß) the corresponding scattered field, and by 

ißoo{0,ß)=    r-      — (57) 
/_£_gj(fcr—7r/4) 

the far field of the scattered field xp(r,6;ß). The function (57) is frequently 
referred to as the (far-field, full-aperture) scattering amplitude (see, for example, 
[2] and [6]). The full-aperture scattering amplitude is related to the scattering 
matrix (see Remark 2.5) via orthogonal transforms specified in the following 
lemma. 

Lemma 2.21 Suppose that b is a positive number and S is the scattering matrix 
corresponding to a scatterer in the disk D(b). Suppose further that 0oo(#, ß) is 
the scattering amplitude.  Then 

^(9, ß) = J2 i{l-m)-Sm,re^m9-lß\ (58) 
m,l 

or equivalently, 
i/>00(e,ß) = Fe-

1-A-1-S-A-Fß. (59) 

Proof. It is easy to verify that the incident field (56) can be written in the form 
(17) with 

a = A-F(ß). (60) 

The corresponding scattered field (18) therefore is 

il>(r,6-J) = Ff1-Hkr-1, (61) 

with 

7 = S-a. (62) 

Substituting (60) into (62) which is in turn substituted into (61), we obtain 

il>(r,$;ß) = Ff1-Hkr-S-A-Fß. (63) 
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Now the lemma follows immediately from the combination of (63), (57) and (54). 
D 

We say that the scattering matrix SWtk corresponding to the scatterer q is 
centered at the origin (0,0) since the expansions (17) and (18) of the incident 
and scattered fields are around the origin. Now, for the same physical scatterer, 
if we shift the origin to a point £ = (a, b), the new scatterer function will be 
qt(x,y) = q(x — a,y — b) in the new coordinates. It has compact support in the 
disk D(A), A = w + |£|, centered at the new origin. We denote by S^ the 
scattering matrix, corresponding to the same scatterer, but centered at £. The 
following lemma is a reformulation of Lemmas 3.2, 3.3 of [7]. 

Lemma 2.22 Suppose that q is the function of a smooth scatterer with compact 
support D{w), that u = (2:1,3/1), v = (2:2,3/2) are two points in R2, and that 
A = w + \u\, B = w + |u|. Suppose further that, corresponding to the same 
scatterer, S\k and Sß k are the scattering matrices centered at u and v. Then 

sv
B,k = r^-svr, (64) 

where T : H? (-> £2 is defined by the formula 

T = F .eifcK2/2-yi)' cos(e)-(x2-xi)- sin(0)]. p-l /gg\ 

where the function 

TV0\ _ eik[(y2-yi)-cos(6)-(x2-xi)-sm(9)] ?QQ\ 

is regarded as the diagonal linear mapping T : £2[0, 2TT] 1—> L2[0,27r] defined by 
the formula 

(T-f)(e) = T(9)-f(6), (67) 

for all f e L2[0,2x]. 

Remark 2.23 Since T and therefore T are orthogonal mappings, two scattering 
matrices corresponding to the same scatterer but centered differently are connected 
to each other by orthogonal transforms; therefore, the two scattering matrices 
contain the same amount of information about the scatterer. 

2.5    The Near Field 

Given r > 0 and an incident field <f>Q upon the chopped scatterer qD(r), the 
scattered field xj) is smooth inside D(r), continuous across the circle |x| = r, and 
is of the form (see (23)) 

00 

0(/>,0)=   £   ßm-Hm(kPyeime, (68) 
ro=—00 
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outside D(r). The series (68) is absolutely convergent for p > r. We refer to 
ip\p=r as the near field. In this subsection, we estimate the rate of convergence of 
(68) at p = r. 

Lemma 2.24 Suppose that r is a positive number and that the scatterer q is 
smooth on D(r). Suppose further that ip : R2 —» C is the scattered field corre- 
sponding to an incident field </>0 : D{r) —> C upon the chopped scatterer qB{r)- 
Then the near field tp\p-r has the Fourier series 

oo 

t/>M)=   £   bm-etme. (69) 
m= — oo 

Furthermore, given r, k, q, there exists c > 0, such that 

bm < 4% (70) 

for all \m\ > No(kr). 

Proof. It is well-known (see [6]) that the scattered field is the solution of the 
Lippmann-Schwinger equation 

rKx) + k2 I    Gk(x, £M£M£K = -k21    Gk(x, MOMOdt,       (71) 
JD{r) JD(r) 

that it is smooth on D(r), and that, given r, k, q, there exists c\ > 0 such that 

IM|oo<Ci||^o||2. (72) 

It is also well-known that (see [1], [3]) the free space Green's function Gk can be 
expressed as 

•        oo 

Gk(x,£) = --   J2   Hm(kp)Jm(kg)e^e-^, (73) 
m——oo 

with x — p(cos(6),sm(6)), £ = #(cos(i?),sin(t?)).   Therefore, the charge density 
a : D(r) —* C defined by the formula 

a(x) = -k2q(x)(i>(x) + <f>o{x)), (74) 

is a smooth function, and that, given r, k, q1 there exists C2 > 0 such that 

Iklloo < c2||^o||2- (75) 

It follows from (71) and (74) that 

1>{x)=(     Gk(x,Oo-(Od{. (76) 
JD(r) 
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For x = /?(cos(0),sin(0)) and p > r, the substitution of (73) into (76) yields 

1>(P,0) = -T    £     ( f*m{Q)-Jm{kQ)-Q-dQ) Hm(kPy
m$, (77) 

^   m=-oo  \Jo ' 

where 
1     r2* ■   „ 

am(?) = -yo   ^MK"^ (78) 

is the ra-th Fourier mode of <r on the circle |x| = g. Therefore, according to (75), 
there exists c3 > 0 such that 

\am(Q)\<c3\\<t>o\h, (79) 

for all integer m and real g G [0, r]. Let 

bm = —— /   am{g)-Jm(kg)-Hm{kr)-g-dg. (80) 
z Jo 

Then 

IU < ^^f0112   f |Jm(*e)--ffm(*r)|.ß.^. (81) z        Jo 
For m > No(kr), according to (13) and (14), there exists a positive number c4 

such that /  \ m 

|Jm(Aß)-fTm(*r)| < ~ (;)   • (§2) 

It follows immediately from (81) and (82) that 

\Om\ <  r a- ^ 2 m^ 

Now, letting p —► r in (77) and combining the result with (80) and (83), we 
obtain (69) and (70). D 

Remark 2.25 For \m\ < z, it is well-known (see [3], pp 366) that 

Mz)   =   O(^), (84) 

#«(*) = °(^E)- (85) 
It follows from (79) and (80) that 

IM < ^11^,11,^573, (86) 

for all \m\ < kr. This means that as a function of m, the Fourier coefficients 
{bm} of (69) remain flat in magnitude for \m\ < kr. The magnitude begins to 
decrease quite suddenly when \m\ becomes greater than kr; it decays to zero at 
the rate l/m2 for m > N0(kr). 

13 



In Lemma 2.24, choose 
<t>0{p,6) = Jn(kp)-em\ (87) 

then it follows from (22)—(24) that the Fourier coefficients { 6m, — co < m < co } 
of the near field tp\p=r, are same as the entries of the the n-th column of the matrix 
Hkr-ST^k- In other words, 

bm =  {Hkr-STtk)m,n- (88) 

The following lemma is a restatement of Lemma 2.24 in terms of the scattering 
matrix. 

Lemma 2.26 Suppose that r is a positive number and that the scatterer q is 
smooth on D(r). Suppose further that Sr,k is the scattering matrix corresponding 
to the chopped scatterer qD(r)-  Then there exists a positive number c such that 

\(Hkr-Si r.k jtn.Ti < 
m* 

(89) 

uniformly for all integers n and m such that \m\ > No(kr). 

N, o(kr) 

* 0 

J 

0 0 

No( kr) 

* 0 

No(kr) j 

0 0 

N0{kr) 

S-H H-S 

Figure 3: Structures of the Matrices  Srtk-Hkr,  Hkr-STtk ■ 

The following remark is a restatement of Remark 2.25 in terms of the scattering 
matrix. 

Remark 2.27 When m becomes greater in absolute value than kr, the elements 
on the m-th row of Hkr-STtk begin to decrease; they decay uniformly at the rate 
1/rn2 for m > No(kr). If we omit the small entries in the part of the matrix 
Hkr'Sr,k whose row index m is greater than No(kr) in absolute value, it follows 
from Remark 2.14 ^at Hkr-STjk is approximately a square matrix of dimension 
2-N0(kr) (see Figure 3). It follows immediately from Lemmas 2.17 and 2.18 that 

(Srik-Hkr)T = T-Hkr-STtk. (90) 

Therefore, (Sr^-Hkr)
r is approximately a square matrix of dimension 2-N0(kr), 

and so is ST^k-Hkr- 
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Figure 3 shows the structures of the two matrices Sr,k-Hkr and Hkr-Sr,k', compare 
with Figure 2. Only the first quadrant of the matrices (entries with both row and 
column indices positive) is depicted here. In the figure, the section of a matrix 
labeled zero have entries small compared to entries in the square submatrix of 
dimension 2-N0{kr). 

2.6    Continuation Method for Nonlinear Problem 

For simplicity, we will restrict our discussion to the case of finite dimensional 
space. Let us consider a nonlinear mapping P : Rn x [0,1] H-+ Rn and the 
solution of the problem 

P(s,l) = 0. (91) 

Suppose that for every A € [0,1], there exists a unique solution x\ € Rn to the 
problem 

P(xx,X) = 0. (92) 

Suppose further that x\ depends smoothly on A, and that the mapping P is 
smooth. Finally, suppose that x0 is known. Then there is a procedure referred 
to as the continuation method which obtains the solution x\ using the "initial 
solution" x0, by recursively solving a series of linearized problems. This simple 
scheme is as follows. 

Suppose that at some A € [0,1) we have obtained the solution x\.   For a 
sufficiently small h > 0, we intend to obtain xx+h, the solution of the equation 

P(xx+h,\ + h) = 0. (93) 

Subtracting (92) from (93), we have 

{«M}.(lwl_Xj) = _A£^)+0(f). (94) 

In other words, up to the second order of h, the perturbation 

6x = xx+h - x\ (95) 

is a solution of a linear problem. If we further assume that the n x n matrix 

öPr^A) 
dx 

is not singular, the increment 8x can be determined up to second order of h. 

Remark 2.28 In most applications, once the second order approximation of 
X\+h is obtained, no further attempt is made to compute the exact xx+h- In- 
stead, the recursion in A proceeds to compute the next solution xx+2h from the 
approximate solution xx+h just obtained. 
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Obviously, the linearization procedure is a standard perturbation analysis on 
the parameter A. Sometimes, it is more convenient and advantageous, both 
computationally and analytically, to carry out the perturbation analysis in a 
slightly different way. Suppose we do not wish to evaluate the term 

dP(xx,\ 
(97) 

dX 

on the right hand side of (94). Given x\, let us compute 

e = P{xx,X + h). (98) 

Subtracting (98) form (93), we obtain 

(dP(xx,X + h)' 
dx 

■8x = -e+0{hz). (99) 

It is easy to verify that e is of order h. As before, a second order approximation 
of the solution x\+h can be obtained from x\ by solving a linear problem. 

2.7    The Solution of a Linear ODE of Matrix 

Suppose that A(r), B(r) and C(r) are three n x n matrices depending contin- 
uously on r G [0,1]. Let us consider an ordinary differential equation of the 
form 

S'(r) = A{r)-S(r) + S{r)-B(r) + C(r). (100) 

Now, we wish to express in close form the solution S(r) at an arbitrary r € (0,1] 
for prescribed initial value S(0). 

Lemma 2.29 Suppose that the n xn matrix P(r) is continuous for all r £ [0,1]. 
Suppose further that a < b are two real numbers in [0,1]. Finally suppose that m 
is a positive integer, and that h = (b — a)/m.  Then the two limits 

EL(a,b;P)   =     limo(J + h-P(b))(I + h-P(b-h))x...x 

(I + h-P(a + h))(I+h-P(a)), (101) 

ER(a,b;P)   =   mlirn(/ + h-P(a))(I + h-P(a +h)) x ... x 

(I + h-P({b-h))(I + h-P(b)) (102) 

exist. Moreover, for arbitrary real numbers r1; r2, r3 6 [0,1], 

EL(ri,r3;P)    =   EL(r2,r3;P)EL(rur2; P), (103) 

ER(rur3;P)    -    ER(rur2]P)ER(r2,r3;P). (104) 
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Finally, 

dEL(a, b; P) 
da 

dEL{a,b-P) 

8b 
dER(a,b;P) 

da 
dER(a,b;P) 

db 

= EL{a,b;P)P(a), 

= P(b)-EL(a,b;P), 

= P(a)-ER{a,b-P), 

= ER(a,b-P)-P(b). 

(105) 

(106) 

(107) 

(108) 

The proof of Lemma 2.29 is trivial, and is omitted here. 

Remark 2.30 If, for any real numbers c, d e [0,1], P(c) commutes with P(d), 
then 

EL(a, b; P) = ER(a, b; P) = exp (£ P(r)dr) . (109) 

Remark 2.31   Under the conditions of the preceding lemma,  it can be easily 
shown that 

EL{a,b;P) 

and 

ER(a,b;P)   = 

I-\p{b-h) 

ri + ^P(b-h))x 

-l 

'l+^P{b-2h)\ x...x 

I-^P(a + h))     (l+^P(a))+0(h% (110) 

I + \p{a)\ (i - ^P(a + h) 
-l 

x 

J+|p(« + Ä)Wj-Ap(a + 2&) 
-l 

x ... x 

I+±P(b-h))(l-±P(b)\     +0(h>). (Ill) 

The following lemma is an immediate consequence of the preceding one. 

Lemma 2.32 Suppose that A(r), B(r) and C(r) are three n x n matrices de- 
pending continuously on r € [0,1].  Then 

S{r) = [ EL{T,r-A)-C{T)-ER{T,r-B)-dT 
Jo 

(112) 
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is the solution of the initial value problem 

S'(r)    =   A(r)-S(r) + S(r).J3(r) + C(r), (113) 

5(0)    =   0. (114) 

3    Heisenberg's Uncertainty Principle and Re- 
cursive Linearization 

It turns out that the ill-posedness of the inverse scattering problem can be ben- 
eficially used to solve it. It means that, due to ill-posedness of the problem, not 
all equations in the nonlinear system (see Remark 2.15) are strongly nonlinear, 
and that when solved recursively in a proper order, they can be reduced to a 
collection of linear problems. In this section, we reformulate the ill-posedness 
and the inverse scattering problem, and present an inversion algorithm. More 
specifically, in Section 3.1, we examine and reformulate the ill-posedness of the 
inverse scattering problem in the special case of weak scattering. In Section 3.2, 
we briefly and informally describe the recursive linearization method. In Section 
3.3, we present the Heisenberg's Uncertainty Principle for the scattering problem, 
which we shall use in Section 3.4 to reformulate the inverse problem. The details 
of the inversion algorithm will be described in Section 3.6. 

3.1    A Special Case 

When q or k is small, the scattered field is weak, and the inverse scattering prob- 
lem becomes essentially linear. In this subsection, we examine this special case 
and make necessary connections to the general case where the inverse problem is 
nonlinear. 

Nowhere does the ill-posedness of the inverse scattering problem become more 
manifest than in the case of weak scattering. As is well-known (see, for example, 
[8], [12]), when q < 1 or k < 1, the scattered field is weak, where the Born 
Approximation to the far field ip^ß^ß) (see Section 2.4) can be written in the 
form 

V>oo(0, ß)=l-T [ ?(*, yykW™e-™e)+y^e-^dxdy (115) 

with an error of 0{q2) if q is small, or of 0(k4log2(k)) if k is small. In other 
words, under the assumption of weak scattering, the far field V>oo(#,/3) depends 
on q essentially linearly, and, up to a higher order error and a scaling, is the 
Fourier transform of q 

qm,n = ^Jü q(x, y)eik(mx+ny)dxdy (116) 



with the pair of real numbers m and n given by 

m   =   k(cosß-cos6), (117) 

n   =   k(smß-sm6). (118) 

Therefore, the full-aperture far-field measurements 

{ MM),   for all (6J) e [0,2TT] X [0,2TT] } (119) 

are the Fourier transform qm,n for those points (m, n) filling the entire disk D(2k), 
which we refer to as the Fourier aperture of radius 2k (see Definition 2.4 and 
Figure 5). With such measurements, the scatterer q can be determined, obviously, 

with the resolution 

radius of Fourier aperture      Ik      I 

where 
A = f (121) 

is the wavelength. We consequently have 

Lemma 3.1 (Uncertainty Principle, Small q) Suppose that q is small. Then 
from the far-field measurements, we cannot determine features of the scatterer 

that are less than half a wavelength. 

Remark 3.2 Lemma 3.1 is a reformulation of the ill-posedness of the (linear) 
inverse problem. It explicitly specifies the null space of the linear operator (115) 
which maps the scatterer q to the scattering measurements V><x>-' the Fourier modes 
of q higher than 2k are not observable in the measurements, and thus cannot be 

determined. 

Remark 3.3 Formulae (115)—(121) are also valid for small k; therefore, Lemma 
3.1 implies that at a sufficiently low frequency only g(0,0)  (the average of the 
scatterer) can be determined from the measurements. 

The scattering matrix Sr,k is small if scattering is weak. Thus, for small q or 
small k, the Riccati equation (34) can be linearized by omitting terms from the 
right hand side of (34) quadratic and cubic in q and Sr,k- The solution of the 
linearized equation 

dSf,k _ wr  2 

dr 2 
= -r-k2-Jkr-qr-JkT (122) 

is given by the formula 

lick2 

S" k = ^ r Jkr-qr-Jkr-r-dr. (123) 
' /    Jo 
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Since S%>k is an approximation to the scattering matrix S^jk, it should be con- 
nected to the Born Approximation (115) due to formula (58). The following is a 
restatement of Lemmas 2.18 of [11] in terms of the scattering matrix. 

Lemma 3.4 Suppose that Sj?k is the solution of (122), Sr,k is the solution of the 
Riccati equation (34). Then there exists a constant c > 0, such that for k > 0 
and all r 6 [0, w], 

l!^-^j2<c-(Hiog(ÄOHMIoo)2. (124) 

Moreover, 

Ff'-A-'-Sl.-A-Fp = I q(x,y)eikW™e-™s)+y(™e-^)}dxdy. (125) 

3.2    The Inversion Algorithm, An Informal Description 

Let us denote by 

P{q,k) = Sia,k (126) 

the system of nonlinear equations for the inverse scattering problem. In this 
subsection, we briefly describe a simple procedure that solves the inverse problem. 

For a given precision e > 0 and frequency k > 0, there should be infinite 
number of forward models q that satisfies (126) to the prescribed precision, due 
to the ill-posedness of the problem. We choose from them the most smooth one 
and denote it by qk. Therefore, to the given precision, the inverse problem can 
be reformulated as 

P(qk,k) = Sw,k. (127) 

We expect that qk lives in a finite dimensional subspace of L2, just as it is the 
case when q is sufficiently small: the Fourier transform of qk is essentially zero 
outside the disk D(2k) (see Remark 3.2). The inversion algorithm is a recursive 
linearization procedure which recovers qk from small k to large k. 

For sufficiently small k, according to Remark 3.3, qk lives in a one-dimensional 
subspace; it is the average of q. Moreover, the equation (127) is linear to the 
prescribed precision e, and therefore can be solved in the least-squares sense to 
obtain qk. 

Now suppose that qk depends continuously on k, and that we have recovered 
qk at some k > 0. Then the standard procedure of continuation (see Section 2.6) 
can be used to recover qk+Sk by solving a linear problem for the perturbation 

Sq = qk+Sk - qk. (128) 

Consequently, the inverse scattering problem (126) can be solved up to any given 
frequency k and to the prescribed precision e > 0, provided that the scattering 
data (20) are available. 
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In the next several subsections, we characterize more precisely the finite di- 
mensional subspace in which qu resides, and describe the inversion algorithm in 
detail. 

3.3    Uncertainty Principle, the General Case 

According to Lemma 3.4, when q is small and up to the second order of the small- 
ness, the knowledge of the scattering data Sw,k is equivalent to the knowledge of 
the Fourier modes of q in the aperture D(2k). It turns out that when q is not 
small, the above statement still essentially holds. In other words, SWtk contains 
information of the Fourier modes of q essentially in D(2k). In this subsection, 
we wish to make this assertion more precise, and to show it is indeed the case. 

In the evaluation of the right hand side of the Riccati equation (34), Jkr + 
SrxHkr, Hkr-Sr,k + Jkr, according to Remarks 2.13 and 2.27, essentially are two 
square matrices of size 2-N0{kr). Therefore, the operation 

(Jkr + Sr,k-Hkr)-qr-(Hkr-Sr,k + Jkr) (129) 

on qr (see (33)) is a process of low-pass filtering on the scatterer q, as depicted 
in Figure 4. At a given frequency k and on the circle |x| = r, only the Fourier 
modes 

{ qm(r)   |   \m\ < 2-N0(kr) } (130) 

essentially participate in the operation; higher-frequency modes of the scatterer 
are filtered out in the process. The relatively low-frequency angular Fourier 
coefficients (130) at r are therefore picked up in the integration 

SWik = ^   T(Jfcr + Sr,k-Hkr)-qAHkr-ST,k + J^-dr, (131) 
I    Jo 

and encoded in the scattering data Sw,k- We thus conclude that the scattering 
data contain insignificant information of the higher-frequency angular Fourier 
coefficients 

{ qm{r)  |  \m\ > 2-N0(kr) } (132) 

of the scatterer for all r € [0,w]. In other words, at each r > 0, the resolution of 
the scatterer on the circle |x| = r is 

27rr    '    - = -A. (133) 
2AT0(kr)      k      2 

That is, the angular resolution is about half a wavelength. Features of q smaller 
than half a wavelength in the angular direction contribute considerably weakly to 
the scattering data; the smaller the features become, the weaker the contributions 
are, and the more difficult it becomes to recover these small features. The above 
discussion can be summarized in the following lemma. 
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N0(kr) 

* 

J 

0 

No(kr) 

0 0 

9o 9-i 9-2 9-3|9-4 ••• 

9i 9o 9-i 9-2|9-3 ••• 

92 9i 9o 9-i|9-2  •■• 

93 92 9i 9o |?-i  ■•• 
j 

94 93 92 9i     9o   ••■ 

J + S-H qr H-S + J 

Figure 4: Process of Low-pass Filtering of the Scatterer. 

Lemma 3.5 (Uncertainty Principle, Angular Direction) Suppose that the smooth 
scatterer q has compact support D(w), and that SWtk is the corresponding scatter- 
ing matrix. Then it is increasingly difficult to determine from S&tk small features 
of q in the angular direction as their sizes become increasingly less than half a 
wavelength. 

Now, we show that the resolution of the scatterer in an arbitrary direction is also 
about half a wavelength. Given £ = (a, h) € R2, let A = w + |£|, and consider 
the scattering matrix S\k, centered at £ and corresponding to the scatterer q 

(see Section 2.4). According to Remark 2.23, SAik and the scattering data 5ro^ 

contain the same amount of information about the scatterer; therefore SA k can 
be used as the scattering data to recover the same scatterer, now represented by 
the function q^(x,y) = q(x — a,y — b). According to Lemma 3.5, the angular 
resolution provided by the scattering data SAk is about half a wavelength. In 
other words, the resolution of qt on any circle centered at £ is about half a 
wavelength. Therefore, for a given point x inside the scatterer and for a given 
direction f, we can always choose the center £ which is sufficiently far from the 
location of the scatterer, such that there is one circle centered at £ which passes 
through x in direction f. Since the resolution of the scatterer on this circle is 
about half a wavelength, and since SAk contains the same amount of information 
about q as the original scattering data SWjk does, we obtain: 

Lemma 3.6 (Uncertainty Principle) Suppose that the smooth scatterer q has 
compact support D(w), and that SWjk is the corresponding scattering matrix. 
Then it is increasingly difficult to determine from S^tk small features of q as their 
sizes become increasingly less than half a wavelength. In other words, contained in 
the measurements S^^ are essentially the Fourier modes of q inside the Fourier 
aperture D(N0(2k)). 

22 



Denote by D(2k)+ the Fourier aperture where the Fourier modes of q can be re- 
covered from the measurements S^^ in a well-conditioned procedure. Presently, 
no detailed characterization of D(2k)+ is available except that it belongs to 
D(N0{2k)). 

M 
s\ 

q(m,ri) 

/ 

Figure 5: Fourier apertures D(2k) and D(2k)+. 

Remark 3.7 The Uncertainty Principle is an equivalent formulation of the ill- 
posedness of the inverse scattering problem: small features of the scatterer belong 
to the virtually-null space (see Remark 2.12) of the nonlinear mapping of the 
inverse scattering problem; they are essentially not observable in a scattering 
experiment. 

3.4    Reformulating Scattering Problem 

Denote by qk the low-frequency part of q in the Fourier aperture D(2k)+, so that 

r~\      _ f  qm,n, [m,n)eD(2k)+, (134) 

The goal of inversion, in the lights of Lemma 3.6, is to stably obtain qk within 
a reasonable precision. By definition, qk is the only component of q that is 
observable in the scattering data; consequently the original forward scattering 
model q can be replace by qk without (essentially) changing the measurements. 
We therefore can reformulate the equation (34) as 

dS., r,k iirr 
k   (Jkr + Sr,k-Hkr)-{qk)r-(Hkr-Srtk + Jkr)- (135) 

dr 2 

Definition 3.8 To a scattering experiment at frequency k, a scatterer q is said 
to look (essentially) the same as a scatterer q if they produce essentially the same 
scattering measurements in the experiment. 
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Definition 3.9 A forward model q is said to be observable, or an observable part 
of the original scatterer q, to a scattering experiment at frequency k, if it looks 
the same as the original q, and its L2 norm is the least among those that look the 
same as q. 

Remark 3.10 At frequency k, qk looks the same as the original q to a full- 
aperture experiment, it is also observable to the full-aperture experiment. On the 
other hand, in an experiment of limited aperture, qk may not be the observable 
forward model, but it looks the same as the observable. 

3.5    Continuity of g& in Frequency k 

In this subsection, we argue that qk, the observable part of q at frequency k, 
depends on k continuously. This is certainly true in the special case of small q. 
There, the observable part of q is the Fourier modes of q in aperture D(2k) (see 
Section 3.1). Therefore, new Fourier modes added to qk+sk are those qm^n in the 
annulus 

A(k,6k) = { (m,n), 2k < Vm2 + n2 < 2(k + Sk)}. (136) 

Consequently, the perturbation in qk, due to the small perturbation'in Ar, is small: 

hk+sk - qkh = \\qk+~sk - qlh = / qm,n -dm-dn = 0(6k). (137) 
JA(k,Sk) 

Assuming the well-posedness of the initial value problem (see (34), (26)) of 
the Riccati equation, we further argue that the dependence of qk on k is also 
continuous in the general case where q is not small. This well-posedness means, 
in particular, that the scattering matrix Sr,k is a smooth function of k, that its 
virtual rank and structure of essentially nonzero entries (see Figure 1) depend on 
k smoothly. Therefore the amount of information the process (129) acquires from 
q depends on k smoothly. We summarize the above discussion as an Observation 
for later reference. 

Observation 3.11 To a full-aperture experiment, the observable scattering model 
qk depends continuously on k in the L2 norm. 

We wish to carry this point further to the case of limited-aperture measurements. 
Denote by qkj the observable part of q corresponding to an experiment of a limited 
aperture. Usually, qk<i is not the same as qk, and therefore, due to Definition 3.9, 

hk,ih < lkl|2. (138) 

We postulate that Observation 3.11 is also valid for scattering experiments with 
limited aperture. This has been observed in our numerical experiments, and can 
be proved, again, in the special case of small q. 
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3.6    A Recursive Linearization Algorithm 

Suppose that a set of full-aperture, full-bandwidth scattering data (see (20)) are 
given, we present in this subsection a stable method for the solution of the inverse 
scattering problem. There are two approaches to the description of the method: 
one is based on the Lippmann-Schwinger equation (see [12]), the other on the 
Riccati equation, which has been numerically implemented (see Section 4), and 
which we wish to present here. 

Let us again consider the nonlinear mapping (see Remark 2.15) which maps 
the scatterer q to the scattering data (see (20)) 

{Sw,k  | 0 < k < oo }, (139) 

defined by the initial value problem (see Section 3.4 and (26)) 

S'T,k   =   -Yk2(Jkr + Sr,k-Hkr){qk)T{HkT-Sr,k + JkT), (140) 

So,*   =   0. (141) 

Discretizing the ^-variable with nodes ki, fc2, k3, ... (see Figure 6), we now 
describe a procedure which recursively determines qk at k = kj for j = 1,2,... 
Indeed, for sufficiently small fci, the relationship between qkl and Sr,kl becomes 

0 k 
i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 »- 

h k2 h 
Figure 6: Computational Grid in the Frequency Space. 

essentially linear (see Section 3.1), and the problem (140), (141) can be replaced 
by the linear one (see Lemma 3.4): 

S'rM      =     y^r-(?*,Hr (142) 

S0M   =   0 (143) 

The solution to this linear initial value problem is obviously given by the formula 

<->a7,&i  — 

ink%  fw rw   
/    Jfc1r-(?*i)P-«/*irT-dr. (144) 

./o 

Now, for the given scattering data SWjkl, the scatterer qkl can be obtained by 
solving the linear problem (144). 

Remark 3.12 In practice, only an approximate qkl is needed to start the recur- 
sive procedure, namely, to determine qk2.   Therefore, kx can usually be chosen 
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quite large, and consequently, the linear equation (142) is not a fine approxima- 
tion to the Riccati equation (140). We find in numerical experiments that the 
lowest frequency ki can be chosen such that its corresponding wavelength is about 
the size of the scatterer. 

By induction, suppose that the scatter q-k have heen recovered at some k > 0, and 

0 k    k 
1 1 1 1 1 1 1 1—9—1 1 1 1 1 1 1 1 »_ 

Figure 7: Update from k to k. 

that k > 0 is slightly greater than k. We intend to determine qk, or equivalently, 
to determine the perturbation 

6q = qk- q-k. (145) 

This can be achieved by employing the perturbation analysis of Section 2.6 where 
the continuation parameter A is now the frequency k. Following the procedures 
described in (98) and (99), we solve at the frequency k the forward scattering 
problem 

Z7TV v   

S'r,k     =     -^-k2(JkT + Sr,k-Hkr)-(q-k)riHkr-Sr,k + Jfcr), (146) 

So,k   =   0, (147) 

corresponding to the scatterer q-k. As a result of the forward solve, we obtain 
ST,k for all r € [0, ca], which will be used later in the linearized equations for the 
perturbation 6q (see equations (151), (153)). 

Remark 3.13 On the assumption that the initial value problem of the Riccati 
equation (see (26), (34)) is well-posed, we observe that the scattering matrix Sr,k, 
the solution of (146) and (14V w^ the scatterer function qk, is different from 
but close to STtk,' for the latter is the solution of the same equations 

zirr 
S'r,k   =   -2-k2(Jkr + Sr,k-Hkr)iqk)r-{Hkr-Srik + Jkr), (148) 

So,k   =   0, (149) 

with a different scatterer function qk close to qk. 

Subtracting (146) from (148), and omitting the second order smallness in Sq and 
in 

{SS)Tik = Sr,k - Sr,k, (150) 
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we obtain the linear ordinary differential equation 

(6S)'rik   =   ^k2 {(JkT + SrXHkr)-Qr-Hkr{6S)r,k + 

+ (SS)r,k-Hkr-(qk:)T-(Hkr-Sr,k + Jkr)   + 

+    (Jkr + SrXHkr)-(8q)riHkr-Sr,k + Jkr)} (151) 

for 6S, with its initial value 
(6S)o,k = 0. (152) 

According to Lemma 2.32, the linear initial value problem (151), (152) has the 
formal solution 

?7T tr 

(&S)r,k   =   ~^k2     EL(T,r-Py){JkT + ST,k-HkT)x 
I     Jo 
(^)T-(HkT-ST,k + Jkr)-ER{r, r; Px)-r-dr (153) 

where Px(r) : Xkr >-> Xkr, Py(r) : YkT i-> Ykr are defined by the formulae 

px(r)   =    lj-k2rHkT{^)r{Hkr-Sr,k + Jkr), (154) 

Py(r)    =    jk2r(Jkr + Sr,k-Hkr){q-k)r-Hkr. (155) 

In particular, at r = CD, (153) becomes a system of linear equations for 8q : 

^k2 I™ EL(r,w:Pyy(Jkr + Sr,k-Hkry(8q~\ x 
I     Jo 

(Hkr-Sr,k + Jkr)-ER(r,w;Px)-r-dr = (6S)^k, (156) 

with the right hand sides (6S)w,k given, and the coefficients EL, ER, S known. 
Denote by L(Xkw i-> YkJ) the linear space of all linear mappings from Xkw to 
Ykw, and by Ck : L2[D(w)] (-> L(Xkw i-> Ykza) the linear operator defined by 
(156). The linear equation (156) can be rewritten as 

£k(8q) = (SSUk- (157) 

The linear equations can be solved (see Remark 3.14) for 6q, and the scatterer 
qk can be obtained from the previously recovered scatterer q-k via (145). 

Remark 3.14 The virtual rank (see Remark 2.12) of the linear operator Ck is 
finite due to the ill-posedness of the inverse scattering problem (see Lemma 3.6 
and Remark 3.7). Therefore, (157) is solved as a least-squares problem of finite 
dimensions to yield the solution 6q. Our numerical experiments show that in 
fact only an roughly approximate qk is needed to continue the up recursion in k, 
namely, to stably determine the scatterer at the next higher frequency. 
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4    Implementations of the Recursive Procedure 

In this section, we discuss the discretization of the spatial variables (r, 6>), the 
treatment of the scattering matrix S, the numerical computation of the Riccati 
equation (146), the evaluation of the linear operators EL, ER, the formation of 
the linear system (156), and the least-squares solution of it. 

4.1    Discretizing the Independent Variables (r,0) 

4.1.1    Discretizing the Azimuth 0 

Given a radius r > 0 and an even number TV > 0, we denote by 

{M,)|0, = ^} (158) 

the equispaced points on the circle { (r, 6) \ 6 € [0, 2TT] } (the value of iV will be 
specified later in this subsection), so that functions on the circle are represented 
by their values at these points. In particular, the scatterer q and its perturbation 
Sq on the circle are understood as real valued vectors of dimension TV; the linear 
diagonal operator qr (see Remark 2.8) is now a diagonal matrix of dimension 
iV; the Fourier transform F and its inverse F~l are understood as the discrete 
Fourier transforms (DFT) of dimension TV; and the linear operator 

qr = F-qr-F'1 (159) 

(see (32)) is regarded as a matrix of dimension TV. A sequence a = {am} £ XkT 

is truncated and rearranged in the DFT order 

{ a0, Qi,..., aw/2, a-yv/2+i, • • •, a-i }; (160) 

so truncated and rearranged are the vectors in Yfcr, the matrices Jkr, Hkr and 
Sr,k- We will refer to the central entries of the vector (160) as the high-frequency 
entries. The high-frequency entries of the scattering matrix are those in the 
center rows and columns. A vector 

{ ßo, ß\, ■ ■ ■, ßM/2, ß-M/2+l, • • •, ß-i } (161) 

of dimension M < TV (M even) can be added to a by firstly zero padding ß 

{ ßo, /?!,..., ßM/2, 0, ... 0, ß-M/2+1, -..,ß-i}, (162) 

and then carrying out the regular addition of two vectors of the same size. Sim- 
ilarly, a scattering matrix of dimension M can be viewed as of dimension TV by 
zero padding. 
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Remark 4.1 When matrices of different dimensions appear in an arithmetic 
operation (see, for example, (186)), the smaller matrices are first zero padded to 
the maximum dimension; the final result is a matrix of the maximum dimension. 

In the rest of this paper, we denote by ng(r) = N. Numerical experiments 
show that riß(r) can be chosen between 2rk and 3r&, which is to say, 2 to 3 
points per wavelength along the arclength of the circle |a;| = r. In our numerical 
experiments, 

ng(r) > 2.8rk. (163) 

4.1.2    Discretizing the Radius r 

Over the interval [0,ct7J, we employ two sets of equispaced computational grids: 

{rj=j-hr,  j   =   0,1,...,nr,   hr = — }, (164) 

{pm = rn-hp,   m   =   0,1,...,np,   hp = — }, (165) 
rip 

with integers nr > np. The first set of grid is used for the solution of initial value 
problem (146) and (147). The second set is for discretization of the integral in 
equation (156). Our experiments show that, with the second order ODE solver 
of Section 4.2, 

nr ~ 10—, (166) 

namely, the grid is about ten points per wavelength over the interval [0,0?]. For 
convenience in computation, the ratio nr/np is chosen as an integer, so that 

{Pm}c{rJ }. (167) 

The ratio is 2 or 3 in our numerical experiments. 

4.2    Solving the Forward Scattering Problem 

The initial value problem (146) and (147) of the Riccati equation is solved by an 
second order, implicit, alternating scheme. Assuming that j is the step counter, 
we initially set j = 0, r = 0, and 

S0,k = 0. (168) 

For j = 1,2,...,«,., S is updated from r,-_i to rj by the following procedures 
(with T = (rj + 7-j_i)/2): if j is odd, 

Z7TT -■ 
&Tj,k        &rj-i,k      —      flr——k   [Jkrj-i    i   Orj_ljk'J^krj^1)  X 

QAJkr, + HkTj-Srj,k); (169) 
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if j is even, 

ITT.~ 
STj,k —Srj_ltk   =   hr—~k (Jkr:+ Sr^k-HkTj) x 

_2 

(^U^+^r^-^)- (170) 

For each r,-, it requires 0 (-/Vf (r,-)) operations to solve each of the linear systems 
(169), (170). Since there are nr steps over [0,w] in the ODE solve, and since nr, 
ns are both proportional to Nw (see (163), (166), and Remark 2.1), the total cost 
for solving the Riccati equation is 0(N*). 

4.3    Evaluating the Operators EL, ER 

In this subsection, we discretize the linear equation (156) and evaluate EL, ER 

on the grid {pm}. There are several ways to evaluate the matrices EL, ER; here, 
we present one of them. For convenience discussion, we first scale the linear 
system (156) using formulae (103), (104): multiplying (156) from the left by 
EL(TX, 0; Py), and from the right by ER(W, 0; Px), we obtain 

-k2 r EL{r^;Py)\Jkr + SrXHkr){8q)r X 
J U 

(Hkr-Srtk + Jkr)-ER(r, 0; Px)-r-dr 

=   EL(uj,0;Py)i6S)w<k-ER(w,Q;Px). (171} 

The integration over [0, zzr] in (156) is discretized using the trapezoidal rule on 
the equispaced grids {pm}: 

Tip 

—k2hpJ2PJEL(PJ,0;Py)iJkPj + SP],k-HkPj) x 
Z 3=0 

(M)pf{Hkpj-~SP},k + JkpjyER(Pj,0;Px) 

=   EL{w,tyPyy{8S)„,k'ER{w&Px). (172) 

where pj is defined as 

P~3 = \Pj
/9   ^l'2'-'^-1' (173) l Piß   J =0,np . v      > 

Although the two matrices EL(r,0;Py), ER(r,0;Px) are required at the coarser 
grid r = pm, they will be first obtained on the finer grid r = rj in order to main- 
tain an accuracy comparable to that in which the scattering matrix S is obtained. 
We use formulae (110), (111) to recursively compute EL(r, 0; Py), ER(r, 0; Px) at 
r — rj, j = 1? 2, — The recursion starts with the initial values 

EL(0,0;Py)   =   /, (174) 

^(0,0;^)   =   /. (175) 
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For j — 1,2,..., nr, the matrix E^rj, 0; Py) is updated from E^rj^^O; Py) via 
the formula 

EL(rj,0-Py) = EL(rj_u0-Py)(KI-Y
Py^-^) (J + y^))     5      (176) 

the matrix ER(TJ, 0; Pr) is updated from ER(TJ-X, 0; -P*) via the formula 

ER(TJ,0;PX) = (l+ y^fa))     (J~ YP^-l]) ^(ri-i,0;P,).      (177) 

4.4    Forming the Linear Equations 

After Ei(rj,0;Py), ER(rj,0;Px) are evaluated (see Section 4.3), and STj,k ob- 
tained from the forward solve (see Section 4.2), we write explicitly the linear 
equations (172) in terms of these matrices, so that we can see more clearly the 
structures of (172). 

For j = 1, 2,..., np, we denote by (see Section 4.1.1) 

Nj = n9(Pj) (178) 

the number of equispaced points on the circle r — pj-, which is also the dimension 
of the matrices SPj,k, EL(PJ,0; Py), and ER(PJ,0;PX). Given j and for 0 < m < 
Nj, we further denote by 

»*. = ^ (179) 

the azimuthal values of the equispaced points on the circle r = pj. Finally, for a 
smooth function g, we denote by g^m the values of g at the equispaced points on 
the circle. We will require the matrix of dimension Nnp 

dS = (SS)„,k, (180) 

and the three matrices of dimension Nj 

B3   =   EL(p3APy)iJkP:+SPj,kHkP3y(N}F), (181) 

A,   =   {N}F-')iJkP]+HkPjSp3ik)-ER(pjAPx), (182) 

{6q)j   =   diag{(8q)jfi,(Sq)j,i,...,(Sq)j,Nj }, (183) 
i i 

where Nf F and JV? F_1 are scaled discrete forward and backward Fourier trans- 
forms, so that 

(iV/FW   =   exp(-i^), (184) 

(JV/F-1)^   =   exp(i^). (185) 
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Then, with the help of (181), (182), (183), (159), we rewrite the linear equation 
(172) in the form 

27T,0,      „   _ „ ,    /^A  pj 
2k

2hp-EL(0,w;Py).\Tj^-Br(8q)j-AJ\-ER(0^;Px) = dS, (186) 

(with the summation of matrices of different dimensions discussed in Remark 
4.1). Denoting by V the linear space of real-valued vectors of dimension 

Nq = EN^ (187) 

and by 7c the linear space of complex-valued vectors of dimension 

*• = K> (188) 
we observe that dS £ 71, that (186) is a system of linear equations for the vector 
Sq £V defined by 

H=     {       ((^)l,0,(<5?)l,l,..-,(^)i,iV1-l), 

((£?ko, (£?ki, ...,(8q)2,N2-i), 

• • • i 

((%P,o,(^)vv,(^)npÄp-i)  }T, (189) 

and that (186) defines a linear operator A : V i-> 71, such that (172) can be 
reformulated as 

A (6q) = dS. (190) 

Remark 4.2 It is easy to see that the procedures for obtaining the matrices 
{ An Bj-> J = 1,2, ...,np }, as well as the application of A to a vector, cost 
0(N*) arithmetic operations. 

Remark 4.3   We define the inner product in the range space 71 by the formula 

(u,v) = Y;Uj-vj (i9i) 
i=i 

so that the induced norm for 71 is the standard L? norm. Since vectors in V of 
the form (189) represent functions of L2(D(w)) in polar coordinates, and since 
the inner product of a pair of functions in L2{D(w)) defined by the formula 

(/,<?) = [ ^J^W7e)-g(r,e)ddj -r-dr, (192) 
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induces the L2 norm, we accordingly define the discrete version of (192) by the 
formula 

np /   1    Nj-1 \ 

(X, y)r = hpY, Pi      TT   J2   *j,rnyj,m     , (193) 
j=0 \     i   m=0 / 

as f/&e inner product for the vectors x, y € V. We refer to the norm of V induced 
by (192) as the IS norm. 

4.5    Least-square Solution of the Linearized Equation 

In order to solve the least-squares problem (190), the conjugate-gradient method 
was employed (to the normal equation of (190)) because it is the least expansive 
among several standard methods, including QR decomposation, Gram-Schmidt 
orthogonalization. The application of the conjugate-gradient method, in this 
case, is tedious and straightforward with one exception. The inner product (193) 
must be used (see Remark 4.3) to obtain the least-squares solution in V, namely, 
the minimization of the solution in the U norm of V, as well as the minimization 
of the residual in the L2 norm of 11. More specifically, this means that the inner 
product in a standard conjugate-gradient method must be replaced with (193). 
It also means that the adjoint operator of A (see (190)) must be redefined as 
follows. We denote by A a matrix of dimension Ns x Nq whose i-th row, aw, is 
such that 

({a^]\y)r = {A(y)]i (194) 

for all y e V. Obviously, the Hermitian of A, namely, the linear operator A* : 
111-> V, is the adjoint operator of A, with respect to the inner product (191) in 
11, and to the inner product (193) in V. Let Sq = A*u, where u € H in the form 
of an Ns x iVs matrix, and 6q in the form (189). It is a tedious but straightforward 
manipulation to show that 

lja)~ = ^ E {Aj}m^{Bj}hm-{ £Ä(0, tu; Px)-u*-EL(0: w; Py) }n,i     (195) 
4    n,l=X 

where {T}m,n denotes the (m,n)-th entry of the matrix T. 

Remark 4.4 It is easy to see from (195) that the application of A* to a vector 
cost 0(N*) arithmetic operations (see also Remark 4-2). 

Remark 4.5 Since only an approximate solution of the least-squares is required 
(see Remark 3.14), the conjugate-gradient iteration is usually terminated at n-th 
step in our numerical experiments when the ratio of norms of the last and the 
initial residuals 

(196) a = 
INI 

is about 10-3. 

33 



5    Numerical Results and Discussions 

FORTRAN programs have been written implementing the procedures described 
in the preceding section. In this section, to illustrate the performance of the algo- 
rithm, we present several numerical examples for the inversion of the Helmholtz 
equation in two dimensions. Remarks will be made, at the beginning and the end 
of this section, to discuss some technical details of the numerical experiments. 

5.1 The Up-recursion and the Complexity 

In our numerical implementations, only an approximate q^ is sought to start 
the recursive procedure described in Section 3.6). We find consistently in our 
numerical experiments that the lowest frequency k\ can be chosen such that its 
corresponding wavelength is the about size of the scatterer. 

Remark 5.1 Our numerical experiments further show that frequently ks (see 
Figure 7) can be chosen such that the size of the scatterer is about j wavelengths. 
For instance, we may set 

kj=j, (197) 

for a scatterer, whose function q is not large, inside a disk of diameter 2ir. 

Assuming a finite number of iterations are required in the conjugate gradient 
method, for the linear system (157) needs not be solved accurately according to 
Remark 3.14, we observe that the least-squares solution of (157) can be approxi- 
mately obtained at a cost of 0(N*) arithmetic operations (see Remarks 4.2, 4.4). 
Then, the inversion algorithm requires O(N^) operations since there are about 
A^ frequencies employed in the recursion (see Remark 5.1). 

5.2 The Forward Modeling 

The scattering data (see Section 2.2) are obtained by numerical solution of the 
forward scattering problem—the initial value problem of the Riccati equations 
(see (34) and (26)). In our numerical computation, we assume the scatterer q is 
nonzero in a disk of radius w = TT. 

We used both the standard fourth order Runge-Kutta method and the second 
order implicit scheme described in Section 4.2 for the numerical solution of the 
ordinary differential equation (34). The numerically obtained solutions were 
compared with the exact ones when they were analytically available. We found 
that both methods converged at rates as expected, with the former being more 
efficient if the accuracy required was higher that 10-4. For general scatterers 
to which exact solutions of the scattering matrix were not available, the rates 
of convergence of the two methods were verified numerically.  In the numerical 
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reconstructions presented below, the scattering data used were all obtained with 
an accuracy 10-3 to 10-4. 

5.3    Numerical Examples 

A large number of numerical experiments have heen made in which several types 
of the scatterers have been reconstructed. The reconstructions of five types of 
scatterers are presented here. The biggest problems that have been tested are 
about forty wavelengths, which require two to three hours CPU time on a c-90 
Cray computer. 

Example 1: Reconstruct a scatterer defined by 

qi(x,y)   =   0.l5-(l-x)2-e-(x2+(y+1f 0.5- ,-(*2W) 

_.L.e-((*+l)2-2/2) 
60 

(198) 

inside the disk D(TT); see Figure 8 for surface and contour plots of the scatterer 
function. Nine frequencies were used in the reconstruction, corresponding to wave 
numbers k = 1,2, • • •, 9. The inversion algorithm reconstructed it accurately (the 

k 1 2 3 4 5 6 7 8 9 

e2 0.57 0.41 0.16 3.1-2 6.4E-3 2.2E-3 1.2E-3 7.9E-4 5.6E-4 

Table 1: L2 Error of Reconstruction at 9 Frequencies, Example 1. 

reconstructed function will not be plotted against the exact since the error is so 
small that it is invisible in the plot). The procedure cost 122 seconds CPU time 
on a Cray C-90 computer; see Table 1 for the L2 error of the reconstruction. 

Example 1.1: To test the stability of the algorithm, we reconstruct in this 
example the scatterer q\ but with noisy data. Noise is added to the scattering 
data used in Example 1 by truncating each number in the data to certain digits. 
For instance, truncating the number 0.129876 to two digits yields 0.12, and the 
perturbation (or noise) incurred here by the truncation is about 1%. Three tests 
were made here corresponding to truncations of the scattering data to N4 = 
3, 2, 1 digits. The resulting errors in the inversion are listed in Table 2. 

Nd 3 2 1 
e2 1.4E-3 1.3E-2 1.1E-1 

Table 2: L2 Error of Reconstruction with Noisy Data, Example 1.1. 
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Figure 9 shows the surface and contour plots of the reconstruction with the 
scattering data truncated to one digit, namely, the noisy data used here only 
have one-digit accuracy. This is a quite severe test to an algorithm. This time, 
not only our computation didn't blow up, it actually reconstructed the scatterer 
with a 11% error. Stability tests were also performed to other scatterers whose 
reconstructions are presented in this paper, the results being similar. 

Example 2: Reconstruct a scatterer defined by 

q2{x, y) = 0.2 {1 + cos(ll-a;) + sin(ll-y)} (199) 

inside D(ir); see Figure 10 for surface and contour plots of the scatterer. This is a 
quite oscillatory function. Inside the disk, there are about 160 peaks and valleys 
representing a highly rugged index of refraction. The computation simulates an 
acoustic experiment in which the background speed of sound is that of water; 
the scatterer is 20.87 centimeters in diameter (about the size of a human head). 
Nine frequencies, / = 7,14,21, • ■ • , 63 kHz, were used in the reconstruction, 
corresponding to wave numbers k = 1,2, ■ • •, 9. At / = 63 kHz, 108 transducers 
were required around the scatterer. The procedure cost 122 seconds CPU time 
on a Cray C-90 computer; see Table 3 for the L2 error of the reconstruction. 

k 1 2 3 4 5 6 7 8 9 
e2 0.53 0.56 0.56 0.55 0.25 8.2E-2 3.6E-2 1.9E-2 1.2E-2 

Table 3: L2 Error of Reconstruction at 9 Frequencies, Example 2. 

Because of the complicated structure of the scatterer, the reconstructed scatterer 
is plotted against the exact scatterer first horizontally across the diameter of the 
disk D(T), then across concentric circles of various radii between 0 and TT of the 
disk; see Figures 11, 12. 

Example 3: Reconstruct a scatterer defined in D(TT) by 

?3(z,y)= < 
' qi(x/0.8,y/0.8)   if r < 2.6, 

-0.5 if rG [2.6,2.9), 
0 if r > 2.9; 

(200) 

see Figure 13 for surface and contour plots of the function.   This scatterer is 
difficult to reconstruct for two reasons. 

(1) Across the two circles r = 2.6 and r = 2.9, the function is discontinuous. 
The value of the function changes sharply to —0.5 in the narrow annulus. 
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(2) If the background speed of sound is that of water, then the material in 
the narrow band 2.6 < r < 2.9 has speed of sound 1.4 times as large as that 
of water. As a result, this high-speed region with sharp boundaries blocks the 
passage of the probing sound waves to the inside of the structure, making it hard 
to reconstruct the smooth part of the scatterer in the middle of the object. 

This example could be regarded as a model problem for ultrasound tomography 
of a human head, where the skull is represented by the thin layer of denser 
material in the region 2.6 < r < 2.9. If the actual object is 20.87 centimeters in 
diameter, the frequencies used were / = 7,14,21, • • •, 84 kHz, corresponding to 
wave numbers k = 1,2, • • •, 12. At / = 84 kHz, 128 transducers were used around 
the scatterer. The CPU time required for the procedure was 263 seconds on a 
Cray C-90 computer. The L2 errors of the reconstruction at the 12 frequencies 

k 1 2 3 4 5 6 

e2 0.576 0.510 0.367 0.260 0.231 0.220 

k 7 8 9 10 11 12 
e2 0.197 0.164 0.146 0.141 0.138 0.136 

Table 4: L2 Error of Reconstruction at 12 Frequencies, Example 3. 

are listed in Table 3. Figure 14 shows the surface and contour plots of the 
reconstructed scatterer, whereas Figure 15 shows the reconstruction horizontally 
across the diameter of the scatterer. 
An examination of the plots show that the error of the reconstructions occurs 
largely around the discontinuities, while the smooth part is recovered more ac- 
curately. 

Example 4: Reconstruct a cylindrically symmetric scatterer defined by 

qA{r) = 0.3 • [ 0.55cos(2r) - 0.44sin(4r) + 0.23sin(6r) + 0.3cos(8r) ],     (201) 

for 0 < r < 7T. Nine frequencies were used in the reconstruction, corresponding 
to wave numbers k = 1,2,3, •••,9. The purpose of this example is to show 
how the Uncertainty Principle works by illustrating the process of convergence 
and the distributions of error in reconstructions at these nine frequencies. An 
examination of the plots of the reconstructions and error functions shows that 

(1) The largest error of the reconstructions occurs near the two points r = 0, 
r = -K where the scatterer is not smooth. 

(2) The error function q — qk is more or less evenly distributed away from the 
end points r = 0, r = -K. 
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(3) The higher the wave number k is, the more oscillatory the error function 
becomes. 

Example 5: Reconstruct a cylindrically symmetric scatterer in the disk D(x) 
defined as follows. Give r0 > 0, the scatterer function is given by the formula 

r — r0 
q5(r) = 0.4 1 — cos (202) 

7T - r0. 

for r0 < r < 7T. Inside the disk D(r0), the scatterer function q is not defined; 
on the circle r = r0, the Dirichlet boundary condition is imposed on the total 
field <f>. Therefore, the circle \x\ = r0 is a totally reflecting surface, and the 
medium inside D(r0) is "sound-soft" (see, for example, [1], page 319-321 for the 
treatment of exterior Dirichlet problem). We choose r0 = 0.8 in the numerical 
computation. Fifteen frequencies were used in the reconstruction, corresponding 
to wave numbers k = 1,2,3, • ■ •, 12. 

The inversion algorithm doesn't know the fact that part of the scattering is 
due to a reflecting surface. Rather, it assumes that the scattering occurs as a 
result of a distribution of an unknow index of refraction everywhere continuous: 
on the disk D(-K), across the circle r = r0, and inside the disk D(r0). The 
purpose of this example is to see whether the inversion algorithm will be stable 
and convergent, and, if so, what this reconstructed continuous function q will be, 
particularly across the reflecting surface and inside the disk D(r0). 

Our numerical experiments show that the reconstruction is indeed stable and 
convergent, see Figure 18 for the plots of the reconstructed qk depicted against 
the exact q at the fifteen frequencies. In the pictures, the exact q is set zero in 
the interval [0,r0] to indicate that it is not defined inside D(r0). The L2 errors 
given in Figure 18 are measured in the interval [r0,7r]. Two comments can be 
made about the reconstruction: 

(1) Inside the totally reflecting disk, there are regions where the values of the 
reconstructed qk are less than — 1.   After the reconstruction starts to converge, 
namely, when k is greater than 4, qk{r) decreases as r moves across the reflecting 
disk, and becomes less than —1 the moment r moves into the reflecting circle 
r = r0.   In other words, the inversion algorithm sees the reflecting disk as a 
region where the speed of sound of the medium is imaginary according to the 
formula 

ky/l + q(r) = ~, (203) v c(r) 

where u > 0 is the angular frequency, c{r) > 0 is the speed of sound. Therefore, to 
the full aperture experiment where the scattering data are collected, a reflecting 
disk looks the same (see Definition 3.8) as a layer of non-propagating medium. 

(2) Outside the totally reflecting disk, the smooth part of the prescribed scat- 
terer is essentially recovered: the reflecting surface is regarded as a discontinuity 
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of some type, which causes the Gibbs phenomenon around it; the scatterer func- 
tion (202) is reconstructed more accurately away from this singular point. 

5.4    Discussions and Conclusions 

The following technical details of the numerical implementation appear to be 
worthy mentioning. 

1. The convergence of recursive linearization procedure depends, of course, on 
the step size of the frequency k. We find in our numerical experiments that when 
the scatterer function is not large (for example, when -0.8 < q < 1), convergence 
is usually guaranteed with the step size given by (197). In general, smaller step 
sizes are required when the scatterer function is very large or very closed to —1. 

On the other hand, larger step sizes of k can generally be used at higher frequen- 
cies k without affecting the convergence. This is so because at a relatively high 
frequency k = a where the dominant lower-frequency components of the scatterer 
have been recovered, q — qa is small. Therefore, the perturbation Sq = qb — qa 

will be small for a relatively large step size of 8k = b — a. 

2. The stability of the algorithm is not sensitive to the step size of the 
frequency k. It is largely controlled by the way the ill-posed linear system (157) 
is solved. Numerical experiments show that the up-recursion in frequency k is 
usually unstable when the least-squares solution of (157) is obtained in such a 
precision that a (see (196)) is smaller than 10"6. With scattering data accurate 
to three digits, we find that a = 10~3 (see Remark 4.5) is suitable to inversion in 
a varieties of cases. 

The following discussions are about the models of forward scattering. 

3. The use of cylindrical geometry to introduce the scattering matrix, and 
subsequently, to obtain the Riccati equation, is a convenient but not the only 
approach to the forward modeling. Scattering matrix associated with straight- 
line geometry, and its Riccati equation, for example, are introduced in [10]. 

4. Forward models other than the Riccati equations can be used to recursively 
linearize the inverse problem. The Lippmann-Schwinger equation seems a better 
candidate for the forward modeling because there is a recursive procedure that 
solves accurately the forward problem in O(N^) operations at a frequency. Thus, 
the multi-frequency inversion costs about 0(N*) operations. The linearization 
procedure based on the Lippmann-Schwinger equation is described in [12]. Its 
implementation and numerical results will be reported on a later date. 

The following discussions are about extentions of the algorithm to three dimen- 
sions and to other types of scattering problems. 
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5. The direct extention of the recursive linearization procedure to three di- 
mensions is straightforward, but is difficult to be implemented numerically, for 
the procedure requires O(N^) operations. The high computational cost in three 
dimensions is primarily a result of the so-called data redundancy: at a frequency 
k > 0, the full-aperture scattering data depend on four independent parameters 
whereas the scatterer q to be recovered is a function of three spatial parameters. 
There are several ways to reduce the cost to 0(N®); each of which uses part of 
the full-aperture scattering data. 

6. The recursive procedure can be applied to measurements of limited aper- 
ture (see [12] for more details). In two dimensions, this only allows us to recover 
partial information of the scatterer within the Fourier aperture D(2k)+. In three 
dimensions, measurements of limited aperture may provide the same amount of 
information about the scatterer as do the full-aperture measurements. 

7. The scheme can be used to solve inverse scattering problems of more 
complicated equations describing more realistic processes of acoustic, elastic, or 
electromagnetic scattering in which the Heisenberg's Uncertainty Principle holds. 
The exact formulation of the uncertainty principle may differ in specific environ- 
ments, but it is certain that everywhere in the realm of wave phenomena an 
incident wave of a lower frequency interacts weakly with the Fourier modes of 
the scatterer of higher frequencies, and such an interaction produces a weaker 
scattered field. 

8. Heisenberg's Uncertainty Principle is also valid in the case of obstacle scat- 
tering. There, lower-frequency incident fields interacts weakly with the higher- 
frequency roughness of the surface of the scattering obstacle. Therefore, the 
inverse obstacle scattering problem can be recursively linearized by the same 
mechanism introduced here in this paper. 
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Figure 8: Surface and Contour Views of Scatterer qu Example 1. 
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Figure 9: Surface and Contour Views of Inversion with Nd = 1, Example 1.1. 
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Figure 10: Surface and Contour Views of Scatterer q2, Example 2. 
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Across Dlomotor.  K=I.O.  orr=0.531 Reros* Dlomotor.  K=2.0.  orr=0.S59 Roro« Dlomotor.  K=3.0.  orr=0.558 

Rcrosc Dlomolor.  K=4.0.  err=0.549 Roross Dlomotor.  K=5.D.  err=0.218 Across Dlomotor.  K=6.0.  err=0.081 

Hcross Diameter.  K=7.0.  orr=0.036 Across Dlomotor,  K=8.0.  orr=0.018 Rcross Dlomotor,  K=9.0,  err=0.012 

Figure 11: Reconstructed vs Exact 52 on Diameter, k — 1,2,... 9, Example 2. 
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Across Circle: r=0.305. K=9.0 
0 2 16 

Across Circle: r=0.611, K=9.Q 
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Across Circle: r=2.44. K=9.0 
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Across Circle: r=2.75, K=9.0 
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Across Circle: r=3.05. K=9.0 

Figure 12: Reconstructed vs Exact q2 on Circles, k = 9, Example 2. 
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Figure 13: Surface and Contour Views of Scatterer q3, Example 3. 
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Figure 14: Surface and Contour Views of Reconstructed q3, Example 3. 
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Across Diameter, K= 1.0 err=0.576        Rcr-oss Dlometer, K= 2.0 err=0.511        Rci-oss Diameter, K= 3.0 err=0.357 

1         ' 1            ' 1 

■ 

n\     i 
• 

h 
r-.. 

'I ^i] 7 

■\ !■ 

• v . 

1            i 1 1 
'-' " 

1       1 1          [ 

A ■ 

0.0 
f.% ^^ A 

J 
|4 

-0.S '-' 
1 1 i 

Across Diameter, K= 4.0 err=0.260        Across Dlomeler, K= 5.0 err=0.231        Roross Diameter, K= 6.0 err=0.220 

Aoross DiamoUr. K= 7.0 err=0.197 floross Diameter,  K= 8.0 orr=0.1S4 Aoross Dlometer. K= 9.0 err=0.146 

Across Diameter. K=10.0 err=0.141 Roross Dloneter, K=11.0 err=0.138 Across Olometer, K=12.0 err:Q.136 

Figure 15: Reconstructed vs Exact on Diameter at 12 Frequencies, Example 3. 
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K = 7.000.  L2 E'rvr    = 0.61E-02 B.000.  L2 Error = 0.16E-OZ S.000.  L2 Error = O.30E-O2 

Figure 16: Reconstructed vs Exact q4 at 12 Frequencies, Example 4. 

: 5.000.   L-2 Error = 0-33E-01 

7.000.  L2 Error = 0.61E-02 

^VYfl^j 
-000.  LZ Error = 0.-3SE-02 K = 9.000.   LZ    Error = 0.30E-02 

Figure 17: Plots of Error Distributions at 9 Frequencies, Example 4. 
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Figure 18: Reconstructed vs Exact q5 at 12 Frequencies, Example 5. 
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